Prisma
For augmenting existing models in PostgreSQL database with vector search, Langchain supports using Prisma together with PostgreSQL and pgvector
Postgres extension.
Setup
Setup database instance with Supabase
Refer to the Prisma and Supabase integration guide to setup a new database instance with Supabase and Prisma.
Install Prisma
- npm
- Yarn
- pnpm
npm install prisma
yarn add prisma
pnpm add prisma
Setup pgvector
self hosted instance with docker-compose
pgvector
provides a prebuilt Docker image that can be used to quickly setup a self-hosted Postgres instance.
services:
db:
image: ankane/pgvector
ports:
- 5432:5432
volumes:
- db:/var/lib/postgresql/data
environment:
- POSTGRES_PASSWORD=
- POSTGRES_USER=
- POSTGRES_DB=
volumes:
db:
Create a new schema
Assuming you haven't created a schema yet, create a new model with a vector
field of type Unsupported("vector")
:
model Document {
id String @id @default(cuid())
content String
vector Unsupported("vector")?
}
Afterwards, create a new migration with --create-only
to avoid running the migration directly.
- npm
- Yarn
- pnpm
npx prisma migrate dev --create-only
npx prisma migrate dev --create-only
npx prisma migrate dev --create-only
Add the following line to the newly created migration to enable pgvector
extension if it hasn't been enabled yet:
CREATE EXTENSION IF NOT EXISTS vector;
Run the migration afterwards:
- npm
- Yarn
- pnpm
npx prisma migrate dev
npx prisma migrate dev
npx prisma migrate dev
Usage
Table names and column names (in fields such as tableName
, vectorColumnName
, columns
and filter
) are passed into SQL queries directly without parametrisation.
These fields must be sanitized beforehand to avoid SQL injection.
import { PrismaVectorStore } from "langchain/vectorstores/prisma";
import { OpenAIEmbeddings } from "langchain/embeddings/openai";
import { PrismaClient, Prisma, Document } from "@prisma/client";
export const run = async () => {
const db = new PrismaClient();
// Use the `withModel` method to get proper type hints for `metadata` field:
const vectorStore = PrismaVectorStore.withModel<Document>(db).create(
new OpenAIEmbeddings(),
{
prisma: Prisma,
tableName: "Document",
vectorColumnName: "vector",
columns: {
id: PrismaVectorStore.IdColumn,
content: PrismaVectorStore.ContentColumn,
},
}
);
const texts = ["Hello world", "Bye bye", "What's this?"];
await vectorStore.addModels(
await db.$transaction(
texts.map((content) => db.document.create({ data: { content } }))
)
);
const resultOne = await vectorStore.similaritySearch("Hello world", 1);
console.log(resultOne);
// create an instance with default filter
const vectorStore2 = PrismaVectorStore.withModel<Document>(db).create(
new OpenAIEmbeddings(),
{
prisma: Prisma,
tableName: "Document",
vectorColumnName: "vector",
columns: {
id: PrismaVectorStore.IdColumn,
content: PrismaVectorStore.ContentColumn,
},
filter: {
content: {
equals: "default",
},
},
}
);
await vectorStore2.addModels(
await db.$transaction(
texts.map((content) => db.document.create({ data: { content } }))
)
);
// Use the default filter a.k.a {"content": "default"}
const resultTwo = await vectorStore.similaritySearch("Hello world", 1);
console.log(resultTwo);
};
API Reference:
- PrismaVectorStore from
langchain/vectorstores/prisma
- OpenAIEmbeddings from
langchain/embeddings/openai
The following SQL operators are available as filters: equals
, in
, isNull
, isNotNull
, like
, lt
, lte
, gt
, gte
, not
.
The samples above uses the following schema:
// This is your Prisma schema file,
// learn more about it in the docs: https://pris.ly/d/prisma-schema
generator client {
provider = "prisma-client-js"
}
datasource db {
provider = "postgresql"
url = env("DATABASE_URL")
}
model Document {
id String @id @default(cuid())
content String
namespace String? @default("default")
vector Unsupported("vector")?
}
API Reference:
You can remove namespace
if you don't need it.