Skip to main content

Llama CPP

Compatibility

Only available on Node.js.

This module is based on the node-llama-cpp Node.js bindings for llama.cpp, allowing you to work with a locally running LLM. This allows you to work with a much smaller quantized model capable of running on a laptop environment, ideal for testing and scratch padding ideas without running up a bill!

Setup

You'll need to install the node-llama-cpp module to communicate with your local model.

npm install -S node-llama-cpp

You will also need a local Llama 2 model (or a model supported by node-llama-cpp). You will need to pass the path to this model to the LlamaCpp module as a part of the parameters (see example).

Out-of-the-box node-llama-cpp is tuned for running on a MacOS platform with support for the Metal GPU of Apple M-series of processors. If you need to turn this off or need support for the CUDA architecture then refer to the documentation at node-llama-cpp.

For advice on getting and preparing llama2 see the documentation for the LLM version of this module.

A note to LangChain.js contributors: if you want to run the tests associated with this module you will need to put the path to your local model in the environment variable LLAMA_PATH.

Usage

Basic use

In this case we pass in a prompt wrapped as a message and expect a response.

import { ChatLlamaCpp } from "langchain/chat_models/llama_cpp";
import { HumanMessage } from "langchain/schema";

const llamaPath = "/Replace/with/path/to/your/model/gguf-llama2-q4_0.bin";

const model = new ChatLlamaCpp({ modelPath: llamaPath });

const response = await model.call([
new HumanMessage({ content: "My name is John." }),
]);
console.log({ response });

/*
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: 'Hello John.',
additional_kwargs: {}
},
lc_namespace: [ 'langchain', 'schema' ],
content: 'Hello John.',
name: undefined,
additional_kwargs: {}
}
*/

API Reference:

System messages

We can also provide a system message, note that with the llama_cpp module a system message will cause the creation of a new session.

import { ChatLlamaCpp } from "langchain/chat_models/llama_cpp";
import { SystemMessage, HumanMessage } from "langchain/schema";

const llamaPath = "/Replace/with/path/to/your/model/gguf-llama2-q4_0.bin";

const model = new ChatLlamaCpp({ modelPath: llamaPath });

const response = await model.call([
new SystemMessage(
"You are a pirate, responses must be very verbose and in pirate dialect, add 'Arr, m'hearty!' to each sentence."
),
new HumanMessage("Tell me where Llamas come from?"),
]);
console.log({ response });

/*
AIMessage {
lc_serializable: true,
lc_kwargs: {
content: "Arr, m'hearty! Llamas come from the land of Peru.",
additional_kwargs: {}
},
lc_namespace: [ 'langchain', 'schema' ],
content: "Arr, m'hearty! Llamas come from the land of Peru.",
name: undefined,
additional_kwargs: {}
}
*/

API Reference:

Chains

Finally we can also use this module with chains, note that using more complex chains will require suitably powerful version of llama2 such as the 70B version.

import { ChatLlamaCpp } from "langchain/chat_models/llama_cpp";
import { PromptTemplate } from "langchain/prompts";
import { LLMChain } from "langchain/chains";

const llamaPath = "/Replace/with/path/to/your/model/gguf-llama2-q4_0.bin";

const model = new ChatLlamaCpp({ modelPath: llamaPath, temperature: 0.5 });

const prompt = PromptTemplate.fromTemplate(
"What is a good name for a company that makes {product}?"
);
const chain = new LLMChain({ llm: model, prompt });

const response = await chain.call({ product: "colorful socks" });

console.log({ response });

/*
{
text: `I'm not sure what you mean by "colorful socks" but here are some ideas:\n` +
'\n' +
'- Sock-it to me!\n' +
'- Socks Away\n' +
'- Fancy Footwear'
}
*/

API Reference: